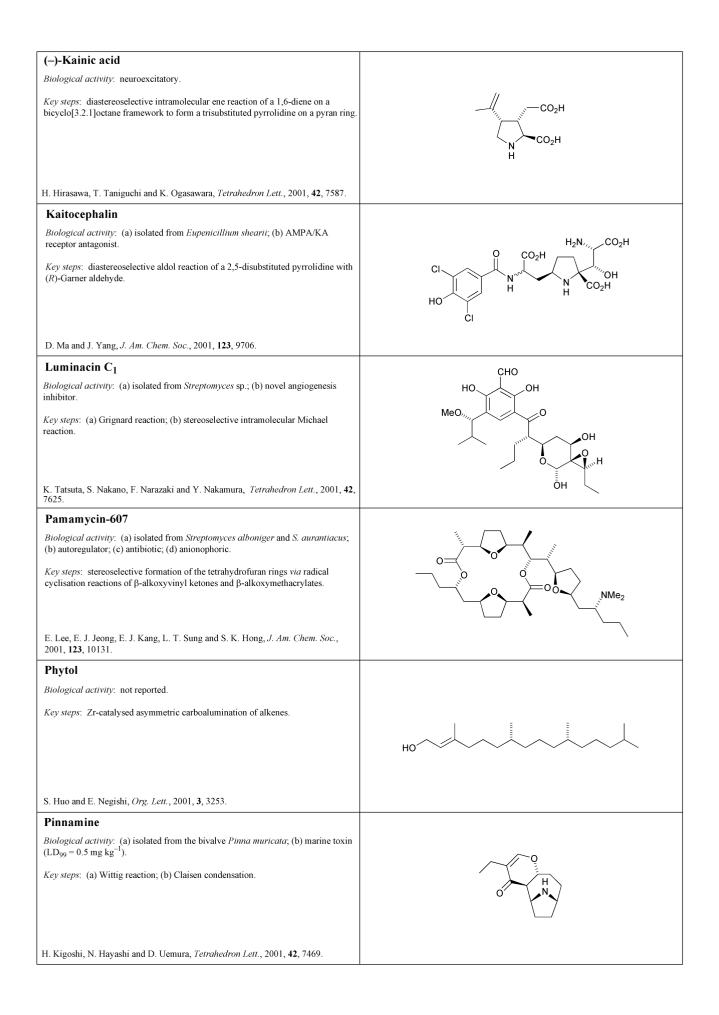

Perkin 1 Abstracts: Natural Product Synthesis

Andrew Gunn, Jacqueline E. Milne and Marcel de Puit


Department of Chemistry, Leeds University, Leeds, UK LS2 9JT

Perkin 1 Abstracts: Natural Product Synthesis aims to highlight syntheses that have been recently published. It includes brief descriptions of *biological activity* and *key steps*. A more comprehensive list of Natural Product syntheses and isolations can be found in *Natural Product Updates*.

vii

Epothilone A	
<i>Biological activity:</i> (a) isolated from cultures of <i>Sorangium cellulosum</i> ; (b) cytotoxic; (c) promotes tubulin polymerisation.	
Key steps: hydroxy- directed nitrile oxide cycloaddition.	
	Junna JuniOH
J. W. Bode and E. M. Carreira, J. Org. Chem., 2001, 66, 6410.	Ö ÕH O
(±)-Euplotin A	
Biological activity: cytotoxin.	
<i>Key steps</i> : formation of a (<i>Z</i>)-2-acyl-2-enal <i>via</i> a retrocycloaddition reaction of a 5-acyl-4-alkyl-4 <i>H</i> -1,3-dioxin.	
R. A. Aungst and R. L. Funk, J. Am. Chem. Soc., 2001, 123, 9455.	
Fostriecin	
<i>Biological activity:</i> (a) <i>in vitro</i> activity against a broad range of cancerous cell lines; (b) <i>in vivo</i> antitumour activity; (c) selective protein phosphatase inhibitor.	
<i>Key steps</i> : (a) hydrolytic kinetic resolution of an epoxyketone; (b) Cr-catalysed hetero-Diels–Alder reaction; (c) catalytic asymmetric Noyori's transfer hydrogenation.	
D. E. Chavez and E. N. Jacobsen, Angew. Chem., Int. Ed., 2001, 40, 3667.	
FR901464	
<i>Biological activity:</i> (a) antitumour activity; (b) affects G_1 and G_2/M cell cycle arrest; (c) induces DNA fragmentation; (d) promotes cell shrinkage.	
<i>Key steps</i> : asymmetric hetero-Diels–Alder reaction employing a novel tridentate chromium catalyst.	
C. F. Thompson, T. F. Jamison and E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123 , 9974.	
Hamigeran A	
Biological activity: not reported.	ОН О О ОН
<i>Key steps</i> : intramolecular Diels–Alder trapping of a photochemically generated hydroxy- <i>o</i> -quinodimethane.	Br OMe
K. C. Nicolaou, D. Gray and J. Tae, Angew. Chem., Int. Ed., 2001, 40, 3679.	
(±)-Hapalindole Q	
<i>Biological activity:</i> (a) isolated from the terrestrial blue-green algae <i>Hapalosiphon fontinalis</i> ; (b) antibacterial; (c) antimycotic.	
Key steps: regio- and diastereoselective Diels-Alder reaction.	SCN
A. C. Kinsman and M. A. Kerr, Org. Lett., 2001, 3, 3189.	

